
2.5. String-Handling Functions | Secure

Coding in C and C++: Strings and Buffer

Overflows

By Robert C. Seacord Apr 24, 2013

2.5. String-Handling Functions

gets()

If there were ever a hard-and-fast rule for secure programming in C and C++, it
would be this: never invoke the gets() function. The gets() function has been
used extensively in the examples of vulnerable programs in this book. The
gets() function reads a line from standard input into a buffer until a
terminating newline or end-of-file (EOF) is found. No check for buffer overflow
is performed. The following quote is from the manual page for the function:

Never use gets(). Because it is impossible to tell without knowing the data
in advance how many characters gets() will read, and because gets() will
continue to store characters past the end of the buffer, it is extremely
dangerous to use. It has been used to break computer security.

As already mentioned, the gets() function has been deprecated in
ISO/IEC 9899:TC3 and removed from C11.

Because the gets() function cannot be securely used, it is necessary to use
an alternative replacement function, for which several good options are
available. Which function you select primarily depends on the overall
approach taken.

C99

Two options for a strictly C99-conforming application are to replace gets() with
either fgets() or getchar().

The C Standard fgets() function has similar behavior to gets(). The fgets()
function accepts two additional arguments: the number of characters to read
and an input stream. When stdin is specified as the stream, fgets() can be used
to simulate the behavior of gets().

The program fragment in Example 2.9 reads a line of text from stdin using the
fgets() function.

Example 2.9. Reading from stdin Using fgets()

01 char buf[LINE_MAX];
02 int ch;
03 char *p;
04
05 if (fgets(buf, sizeof(buf), stdin)) {
06 /* fgets succeeds, scan for newline character */

2.5. String-Handling Functions | Secure Coding in C and C++: Strings... https://www.informit.com/articles/article.aspx?p=2036582&seqNum=5

1 of 15 3/02/2021, 7:11 pm

07 p = strchr(buf, '\n');
08 if (p) {
09 *p = '\0';
10 }
11 else {
12 /* newline not found, flush stdin to end of line */
13 while (((ch = getchar()) != '\n')
14 && !feof(stdin)
15 && !ferror(stdin)
16);
17 }
18 }
19 else {
20 /* fgets failed, handle error */
21 }

Unlike gets(), the fgets() function retains the newline character, meaning that
the function cannot be used as a direct replacement for gets().

When using fgets(), it is possible to read a partial line. Truncation of user input
can be detected because the input buffer will not contain a newline character.

The fgets() function reads, at most, one less than the number of characters
specified from the stream into an array. No additional characters are read after a
newline character or EOF. A null character is written immediately after the last
character read into the array.

It is possible to use fgets() to securely process input lines that are too long to
store in the destination array, but this is not recommended for performance
reasons. The fgets() function can result in a buffer overflow if the specified
number of characters to input exceeds the length of the destination buffer.

A second alternative for replacing the gets() function in a strictly C99-
conforming application is to use the getchar() function. The getchar() function
returns the next character from the input stream pointed to by stdin. If the
stream is at EOF, the EOF indicator for the stream is set and getchar() returns
EOF. If a read error occurs, the error indicator for the stream is set and getchar()
returns EOF. The program fragment in Example 2.10 reads a line of text from
stdin using the getchar() function.

Example 2.10. Reading from stdin Using getchar()

01 char buf[BUFSIZ];
02 int ch;
03 int index = 0;
04 int chars_read = 0;
05
06 while (((ch = getchar()) != '\n')
07 && !feof(stdin)
08 && !ferror(stdin))
09 {
10 if (index < BUFSIZ-1) {
11 buf[index++] = (unsigned char)ch;
12 }
13 chars_read++;
14 } /* end while */
15 buf[index] = '\0'; /* null-terminate */
16 if (feof(stdin)) {
17 /* handle EOF */
18 }
19 if (ferror(stdin)) {
20 /* handle error */
21 }

2.5. String-Handling Functions | Secure Coding in C and C++: Strings... https://www.informit.com/articles/article.aspx?p=2036582&seqNum=5

2 of 15 3/02/2021, 7:11 pm

22 if (chars_read > index) {
23 /* handle truncation */
24 }

If at the end of the loop feof(stdin) ! = 0, the loop has read through to the end
of the file without encountering a newline character. If at the end of the loop
ferror(stdin) ! = 0, a read error occurred before the loop encountered a
newline character. If at the end of the loop chars_read > index, the input string
has been truncated. The CERT C Secure Coding Standard [Seacord 2008],
“FIO34-C. Use int to capture the return value of character IO functions,” is also
applied in this solution.

Using the getchar() function to read in a line can still result in a buffer overflow
if writes to the buffer are not properly bounded.

Reading one character at a time provides more flexibility in controlling behavior
without additional performance overhead. The following test for the while loop
is normally sufficient:

while (((ch = getchar()) ! = '\n') && ch ! = EOF)

See The CERT C Secure Coding Standard [Seacord 2008], “FIO35-C. Use
feof() and ferror() to detect end-of-file and file errors when sizeof(int) ==
sizeof(char),” for the case where feof() and ferror() must be used instead.

C11 Annex K Bounds-Checking Interfaces: gets_s()

The C11 gets_s() function is a compatible but more secure version of gets().
The gets_s() function is a closer replacement for the gets() function than
fgets() in that it only reads from the stream pointed to by stdin and does not
retain the newline character. The gets_s() function accepts an additional
argument, rsize_t, that specifies the maximum number of characters to input.
An error condition occurs if this argument is equal to zero or greater than
RSIZE_MAX or if the pointer to the destination character array is NULL. If an error
condition occurs, no input is performed and the character array is not modified.
Otherwise, the gets_s() function reads, at most, one less than the number of
characters specified, and a null character is written immediately after the last
character read into the array. The program fragment shown in Example 2.11
reads a line of text from stdin using the gets_s() function.

Example 2.11. Reading from stdin Using gets_s()

1 char buf[BUFSIZ];
2
3 if (gets_s(buf, sizeof(buf)) == NULL) {
4 /* handle error */
5 }

The gets_s() function returns a pointer to the character array if successful. A
null pointer is returned if the function arguments are invalid, an end-of-file is
encountered, and no characters have been read into the array or if a read error
occurs during the operation.

The gets_s() function succeeds only if it reads a complete line (that is, it reads a
newline character). If a complete line cannot be read, the function returns NULL,
sets the buffer to the null string, and clears the input stream to the next newline
character.

2.5. String-Handling Functions | Secure Coding in C and C++: Strings... https://www.informit.com/articles/article.aspx?p=2036582&seqNum=5

3 of 15 3/02/2021, 7:11 pm

The gets_s() function can still result in a buffer overflow if the specified number
of characters to input exceeds the length of the destination buffer.

As noted earlier, the fgets() function allows properly written programs to safely
process input lines that are too long to store in the result array. In general, this
requires that callers of fgets() pay attention to the presence or absence of a
newline character in the result array. Using gets_s() with input lines that might
be too long requires overriding its runtime-constraint handler (and resetting it
to its default value when done). Consider using fgets() (along with any needed
processing based on newline characters) instead of gets_s().

Dynamic Allocation Functions

ISO/IEC TR 24731-2 describes the getline() function derived from POSIX. The
behavior of the getline() function is similar to that of fgets() but offers several
extra features. First, if the input line is too long, rather than truncating input,
the function resizes the buffer using realloc(). Second, if successful, it returns
the number of characters read, which is useful in determining whether the input
has any null characters before the newline. The getline() function works only
with buffers allocated with malloc(). If passed a null pointer, getline() allocates
a buffer of sufficient size to hold the input. As such, the user must explicitly
free() the buffer later. The getline() function is equivalent to the getdelim()
function (also defined in ISO/IEC TR 24731-2) with the delimiter character
equal to the newline character. The program fragment shown in Example 2.12
reads a line of text from stdin using the getline() function.

Example 2.12. Reading from stdin Using getline()

01 int ch;
02 char *p;
03 size_t buffer_size = 10;
04 char *buffer = malloc(buffer_size);
05 ssize_t size;
06
07 if ((size = getline(&buffer, &buffer_size, stdin)) == -1) {
08 /* handle error */
09 } else {
10 p = strchr(buffer, '\n');
11 if (p) {
12 *p = '\0';
13 } else {
14 /* newline not found, flush stdin to end of line */
15 while (((ch = getchar()) != '\n')
16 && !feof(stdin)
17 && !ferror(stdin)
18);
19 }
20 }
21
22 /* ... work with buffer ... */
23
24 free(buffer);

The getline() function returns the number of characters written into the buffer,
including the newline character if one was encountered before end-of-file. If a
read error occurs, the error indicator for the stream is set, and getline() returns
–1. Consequently, the design of this function violates The CERT C Secure Coding
Standard [Seacord 2008], “ERR02-C. Avoid in-band error indicators,” as
evidenced by the use of the ssize_t type that was created for the purpose of
providing in-band error indicators.

2.5. String-Handling Functions | Secure Coding in C and C++: Strings... https://www.informit.com/articles/article.aspx?p=2036582&seqNum=5

4 of 15 3/02/2021, 7:11 pm

Note that this code also does not check to see if malloc() succeeds. If malloc()
fails, however, it returns NULL, which gets passed to getline(), which promptly
allocates a buffer of its own.

Table 2.4 summarizes some of the alternative functions for gets() described in
this section. All of these functions can be used securely.

Table 2.4. Alternative Functions for gets()

Standard/TR Retains Newline
Character

Dynamically
Allocates Memory

fgets() C99 Yes No

getline() TR 24731-2 Yes Yes

gets_s() C11 No No

strcpy() and strcat()

The strcpy() and strcat() functions are frequent sources of buffer overflows
because they do not allow the caller to specify the size of the destination array,
and many prevention strategies recommend more secure variants of these
functions.

C99

Not all uses of strcpy() are flawed. For example, it is often possible to
dynamically allocate the required space, as illustrated in Example 2.13.

Example 2.13. Dynamically Allocating Required Space

1 dest = (char *)malloc(strlen(source) + 1);
2 if (dest) {
3 strcpy(dest, source);
4 } else {
5 /* handle error */
6 ...
7 }

For this code to be secure, the source string must be fully validated [Wheeler
2004], for example, to ensure that the string is not overly long. In some cases, it
is clear that no potential exists for writing beyond the array bounds. As a result,
it may not be cost-effective to replace or otherwise secure every call to strcpy().
In other cases, it may still be desirable to replace the strcpy() function with a
call to a safer alternative function to eliminate diagnostic messages generated by
compilers or analysis tools.

The C Standard strncpy() function is frequently recommended as an alternative
to the strcpy() function. Unfortunately, strncpy() is prone to null-termination
errors and other problems and consequently is not considered to be a secure
alternative to strcpy().

OpenBSD

The strlcpy() and strlcat() functions first appeared in OpenBSD 2.4. These

2.5. String-Handling Functions | Secure Coding in C and C++: Strings... https://www.informit.com/articles/article.aspx?p=2036582&seqNum=5

5 of 15 3/02/2021, 7:11 pm

functions copy and concatenate strings in a less error-prone manner than the
corresponding C Standard functions. These functions’ prototypes are as follows:

size_t strlcpy(char *dst, const char *src, size_t size);
size_t strlcat(char *dst, const char *src, size_t size);

The strlcpy() function copies the null-terminated string from src to dst (up to
size characters). The strlcat() function appends the null-terminated string src
to the end of dst (but no more than size characters will be in the destination).

To help prevent writing outside the bounds of the array, the strlcpy() and
strlcat() functions accept the full size of the destination string as a size
parameter.

Both functions guarantee that the destination string is null-terminated for all
nonzero-length buffers.

The strlcpy() and strlcat() functions return the total length of the string they
tried to create. For strlcpy(), that is simply the length of the source; for
strlcat(), it is the length of the destination (before concatenation) plus the
length of the source. To check for truncation, the programmer must verify that
the return value is less than the size parameter. If the resulting string is
truncated, the programmer now has the number of bytes needed to store the
entire string and may reallocate and recopy.

Neither strlcpy() nor strlcat() zero-fills its destination string (other than the
compulsory null byte to terminate the string). The result is performance close to
that of strcpy() and much better than that of strncpy().

C11 Annex K Bounds-Checking Interfaces

The strcpy_s() and strcat_s() functions are defined in C11 Annex K as close
replacement functions for strcpy() and strcat(). The strcpy_s() function has
an additional parameter giving the size of the destination array to prevent buffer
overflow:

1 errno_t strcpy_s(
2 char * restrict s1, rsize_t s1max, const char * restrict s2
3);

The strcpy_s() function is similar to strcpy() when there are no constraint
violations. The strcpy_s() function copies characters from a source string to a
destination character array up to and including the terminating null character.

The strcpy_s() function succeeds only when the source string can be fully
copied to the destination without overflowing the destination buffer. The
function returns 0 on success, implying that all of the requested characters from
the string pointed to by s2 fit within the array pointed to by s1 and that the
result in s1 is null-terminated. Otherwise, a nonzero value is returned.

The strcpy_s() function enforces a variety of runtime constraints. A runtime-
constraint error occurs if either s1 or s2 is a null pointer; if the maximum length
of the destination buffer is equal to zero, greater than RSIZE_MAX, or less than or
equal to the length of the source string; or if copying takes place between
overlapping objects. The destination string is set to the null string, and the
function returns a nonzero value to increase the visibility of the problem.

2.5. String-Handling Functions | Secure Coding in C and C++: Strings... https://www.informit.com/articles/article.aspx?p=2036582&seqNum=5

6 of 15 3/02/2021, 7:11 pm

Example 2.15 shows the Open Watcom implementation of the strcpy_s()
function. The runtime-constraint error checks are followed by comments.

Example 2.14. Open Watcom Implementation of the strcpy_s()
Function

01 errno_t strcpy_s(
02 char * restrict s1,
03 rsize_t s1max,
04 const char * restrict s2
05) {
06 errno_t rc = -1;
07 const char *msg;
08 rsize_t s2len = strnlen_s(s2, s1max);
09 // Verify runtime constraints
10 if (nullptr_msg(msg, s1) && // s1 not NULL
11 nullptr_msg(msg, s2) && // s2 not NULL
12 maxsize_msg(msg, s1max) && // s1max <= RSIZE_MAX
13 zero_msg(msg, s1max) && // s1max != 0
14 a_gt_b_msg(msg, s2len, s1max - 1) &&
15 // s1max > strnlen_s(s2, s1max)
16 overlap_msg(msg,s1,s1max,s2,s2len) // s1 s2 no overlap
17) {
18 while (*s1++ = *s2++);
19 rc = 0;
20 } else {
21 // Runtime constraints violated, make dest string empty
22 if ((s1 != NULL) && (s1max > 0) && lte_rsizmax(s1max)) {
23 s1[0] = NULLCHAR;
24 }
25 // Now call the handler
26 __rtct_fail(__func__, msg, NULL);
27 }
28 return(rc);
29 }

The strcat_s() function appends the characters of the source string, up to and
including the null character, to the end of the destination string. The initial
character from the source string overwrites the null character at the end of the
destination string.

The strcat_s() function returns 0 on success. However, the destination string is
set to the null string and a nonzero value is returned if either the source or
destination pointer is NULL or if the maximum length of the destination buffer is
equal to 0 or greater than RSIZE_MAX. The strcat_s() function will also fail if the
destination string is already full or if there is not enough room to fully append
the source string.

The strcpy_s() and strcat_s() functions can still result in a buffer overflow if
the maximum length of the destination buffer is incorrectly specified.

Dynamic Allocation Functions

ISO/IEC TR 24731-2 [ISO/IEC TR 24731-2:2010] describes the POSIX strdup()
function, which can also be used to copy a string. ISO/IEC TR 24731-2 does not
define any alternative functions to strcat(). The strdup() function accepts a
pointer to a string and returns a pointer to a newly allocated duplicate string.
This memory must be reclaimed by passing the returned pointer to free().

Summary Alternatives

2.5. String-Handling Functions | Secure Coding in C and C++: Strings... https://www.informit.com/articles/article.aspx?p=2036582&seqNum=5

7 of 15 3/02/2021, 7:11 pm

Table 2.5 summarizes some of the alternative functions for copying strings
described in this section.

Table 2.5. String Copy Functions

Standard/TR Buffer
Overflow
Protection

Guarantees
Null
Termination

May
Truncate
String

Allocates
Dynamic
Memory

strcpy() C99 No No No No

strncpy() C99 Yes No Yes No

strlcpy() OpenBSD Yes Yes Yes No

strdup() TR 24731-2 Yes Yes No Yes

strcpy_s() C11 Yes Yes No No

Table 2.6 summarizes some of the alternative functions for strcat() described
in this section. TR 24731-2 does not define an alternative function to strcat().

Table 2.6. String Concatenation Functions

Standard/TR Buffer
Overflow
Protection

Guarantees
Null
Termination

May
Truncate
String

Allocates
Dynamic
Memory

strcat() C99 No No No No

strncat() C99 Yes No Yes No

strlcat() OpenBSD Yes Yes Yes No

strcat_s() C11 Yes Yes No No

strncpy() and strncat()

The strncpy() and strncat() functions are similar to the strcpy() and strcat()
functions, but each has an additional size_t parameter n that limits the number
of characters to be copied. These functions can be thought of as truncating copy
and concatenation functions.

The strncpy() library function performs a similar function to strcpy() but
allows a maximum size n to be specified:

1 char *strncpy(
2 char * restrict s1, const char * restrict s2, size_t n
3);

The strncpy() function can be used as shown in the following example:

strncpy(dest, source, dest_size - 1);
dest[dest_size - 1] = '\0';

Because the strncpy() function is not guaranteed to null-terminate the
destination string, the programmer must be careful to ensure that the
destination string is properly null-terminated without overwriting the last
character.

2.5. String-Handling Functions | Secure Coding in C and C++: Strings... https://www.informit.com/articles/article.aspx?p=2036582&seqNum=5

8 of 15 3/02/2021, 7:11 pm

The C Standard strncpy() function is frequently recommended as a “more
secure” alternative to strcpy(). However, strncpy() is prone to string
termination errors, as detailed shortly under “C11 Annex K Bounds-Checking
Interfaces.”

The strncat() function has the following signature:

1 char *strncat(
2 char * restrict s1, const char * restrict s2, size_t n
3);

The strncat() function appends not more than n characters (a null character
and characters that follow it are not appended) from the array pointed to by s2
to the end of the string pointed to by s1. The initial character of s2 overwrites the
null character at the end of s1. A terminating null character is always appended
to the result. Consequently, the maximum number of characters that can end up
in the array pointed to by s1 is strlen(s1) + n + 1.

The strncpy() and strncat() functions must be used with care, or should not be
used at all, particularly as less error-prone alternatives are available. The
following is an actual code example resulting from a simplistic transformation of
existing code from strcpy() and strcat() to strncpy() and strncat():

strncpy(record, user, MAX_STRING_LEN - 1);
strncat(record, cpw, MAX_STRING_LEN - 1);

The problem is that the last argument to strncat() should not be the total buffer
length; it should be the space remaining after the call to strncpy(). Both
functions require that you specify the remaining space and not the total size of
the buffer. Because the remaining space changes every time data is added or
removed, programmers must track or constantly recompute the remaining
space. These processes are error prone and can lead to vulnerabilities. The
following call correctly calculates the remaining space when concatenating a
string using strncat():

strncat(dest, source, dest_size-strlen(dest)-1)

Another problem with using strncpy() and strncat() as alternatives to strcpy()
and strcat() functions is that neither of the former functions provides a status
code or reports when the resulting string is truncated. Both functions return a
pointer to the destination buffer, requiring significant effort by the programmer
to determine whether the resulting string was truncated.

There is also a performance problem with strncpy() in that it fills the entire
destination buffer with null bytes after the source data is exhausted. Although
there is no good reason for this behavior, many programs now depend on it, and
as a result, it is difficult to change.

The strncpy() and strncat() functions serve a role outside of their use as
alternative functions to strcpy() and strcat(). The original purpose of these
functions was to allow copying and concatenation of a substring. However, these
functions are prone to buffer overflow and null-termination errors.

C11 Annex K Bounds-Checking Interfaces

C11 Annex K specifies the strncpy_s() and strncat_s() functions as close
replacements for strncpy() and strncat().

2.5. String-Handling Functions | Secure Coding in C and C++: Strings... https://www.informit.com/articles/article.aspx?p=2036582&seqNum=5

9 of 15 3/02/2021, 7:11 pm

The strncpy_s() function copies not more than a specified number of successive
characters (characters that follow a null character are not copied) from a source
string to a destination character array. The strncpy_s() function has the
following signature:

1 errno_t strncpy_s(
2 char * restrict s1,
3 rsize_t s1max,
4 const char * restrict s2,
5 rsize_t n
6);

The strncpy_s() function has an additional parameter giving the size of the
destination array to prevent buffer overflow. If a runtime-constraint violation
occurs, the destination array is set to the empty string to increase the visibility of
the problem.

The strncpy_s() function stops copying the source string to the destination
array when one of the following two conditions occurs:

1. The null character terminating the source string is copied to the
destination.

2. The number of characters specified by the n argument has been copied.

The result in the destination is provided with a null character terminator if one
was not copied from the source. The result, including the null terminator, must
fit within the destination, or a runtime-constraint violation occurs. Storage
outside of the destination array is never modified.

The strncpy_s() function returns 0 to indicate success. If the input arguments
are invalid, it returns a nonzero value and sets the destination string to the null
string. Input validation fails if either the source or destination pointer is NULL or
if the maximum size of the destination string is 0 or greater than RSIZE_MAX. The
input is also considered invalid when the specified number of characters to be
copied exceeds RSIZE_MAX.

A strncpy_s() operation can actually succeed when the number of characters
specified to be copied exceeds the maximum length of the destination string as
long as the source string is shorter than the maximum length of the destination
string. If the number of characters to copy is greater than or equal to the
maximum size of the destination string and the source string is longer than the
destination buffer, the operation will fail.

Because the number of characters in the source is limited by the n parameter
and the destination has a separate parameter giving the maximum number of
elements in the destination, the strncpy_s() function can safely copy a
substring, not just an entire string or its tail.

Because unexpected string truncation is a possible security vulnerability,
strncpy_s() does not truncate the source (as delimited by the null terminator
and the n parameter) to fit the destination. Truncation is a runtime-constraint
violation. However, there is an idiom that allows a program to force truncation
using the strncpy_s() function. If the n argument is the size of the destination
minus 1, strncpy_s() will copy the entire source to the destination or truncate it
to fit (as always, the result will be null-terminated). For example, the following
call will copy src to the dest array, resulting in a properly null-terminated string
in dest. The copy will stop when dest is full (including the null terminator) or
when all of src has been copied.

2.5. String-Handling Functions | Secure Coding in C and C++: Strings... https://www.informit.com/articles/article.aspx?p=2036582&seqNum=5

10 of 15 3/02/2021, 7:11 pm

strncpy_s(dest, sizeof dest, src, (sizeof dest)-1)

Although the OpenBSD function strlcpy() is similar to strncpy(), it is more
similar to strcpy_s() than to strncpy_s(). Unlike strlcpy(), strncpy_s()
supports checking runtime constraints such as the size of the destination array,
and it will not truncate the string.

Use of the strncpy_s() function is less likely to introduce a security flaw because
the size of the destination buffer and the maximum number of characters to
append must be specified. Consider the following definitions:

1 char src1[100] = "hello";
2 char src2[7] = {'g','o','o','d','b','y','e'};
3 char dst1[6], dst2[5], dst3[5];
4 errno_t r1, r2, r3;

Because there is sufficient storage in the destination character array, the
following call to strncpy_s() assigns the value 0 to r1 and the sequence hello\0
to dst1:

r1 = strncpy_s(dst1, sizeof(dst1), src1, sizeof(src1));

The following call assigns the value 0 to r2 and the sequence good\0 to dst2:

r2 = strncpy_s(dst2, sizeof(dst2), src2, 4);

However, there is inadequate space to copy the src1 string to dst3.
Consequently, if the following call to strncpy_s() returns, r3 is assigned a
nonzero value and dst3[0] is assigned '\0':

r3 = strncpy_s(dst3, sizeof(dst3), src1, sizeof(src1));

If strncpy() had been used instead of strncpy_s(), the destination array dst3
would not have been properly null-terminated.

The strncat_s() function appends not more than a specified number of
successive characters (characters that follow a null character are not copied)
from a source string to a destination character array. The initial character from
the source string overwrites the null character at the end of the destination
array. If no null character was copied from the source string, a null character is
written at the end of the appended string. The strncat_s() function has the
following signature:

1 errno_t strncat_s(
2 char * restrict s1,
3 rsize_t s1max,
4 const char * restrict s2,
5 rsize_t n
6);

A runtime-constraint violation occurs and the strncat_s() function returns a
nonzero value if either the source or destination pointer is NULL or if the
maximum length of the destination buffer is equal to 0 or greater than
RSIZE_MAX. The function fails when the destination string is already full or if
there is not enough room to fully append the source string. The strncat_s()
function also ensures null termination of the destination string.

The strncat_s() function has an additional parameter giving the size of the
destination array to prevent buffer overflow. The original string in the

2.5. String-Handling Functions | Secure Coding in C and C++: Strings... https://www.informit.com/articles/article.aspx?p=2036582&seqNum=5

11 of 15 3/02/2021, 7:11 pm

destination plus the new characters appended from the source must fit and be
null-terminated to avoid a runtime-constraint violation. If a runtime-constraint
violation occurs, the destination array is set to a null string to increase the
visibility of the problem.

The strncat_s() function stops appending the source string to the destination
array when the first of the following two conditions occurs:

1. The null-terminating source string is copied to the destination.
2. The number of characters specified by the n parameter has been copied.

The result in the destination is provided with a null character terminator if one
was not copied from the source. The result, including the null terminator, must
fit within the destination, or a runtime-constraint violation occurs. Storage
outside of the destination array is never modified.

Because the number of characters in the source is limited by the n parameter
and the destination has a separate parameter giving the maximum number of
elements in the destination, the strncat_s() function can safely append a
substring, not just an entire string or its tail.

Because unexpected string truncation is a possible security vulnerability,
strncat_s() does not truncate the source (as specified by the null terminator
and the n parameter) to fit the destination. Truncation is a runtime-constraint
violation. However, there is an idiom that allows a program to force truncation
using the strncat_s() function. If the n argument is the number of elements
minus 1 remaining in the destination, strncat_s() will append the entire source
to the destination or truncate it to fit (as always, the result will be null-
terminated). For example, the following call will append src to the dest array,
resulting in a properly null-terminated string in dest. The concatenation will
stop when dest is full (including the null terminator) or when all of src has been
appended:

1 strncat_s(
2 dest,
3 sizeof dest,
4 src,
5 (sizeof dest) - strnlen_s(dest, sizeof dest) - 1
6);

Although the OpenBSD function strlcat() is similar to strncat(), it is more
similar to strcat_s() than to strncat_s(). Unlike strlcat(), strncat_s()
supports checking runtime constraints such as the size of the destination array,
and it will not truncate the string.

The strncpy_s() and strncat_s() functions can still overflow a buffer if the
maximum length of the destination buffer and number of characters to copy are
incorrectly specified.

Dynamic Allocation Functions

ISO/IEC TR 24731-2 [ISO/IEC TR 24731-2:2010] describes the strndup()
function, which can also be used as an alternative function to strncpy().
ISO/IEC TR 24731-2 does not define any alternative functions to strncat(). The
strndup() function is equivalent to the strdup() function, duplicating the
provided string in a new block of memory allocated as if by using malloc(), with
the exception being that strndup() copies, at most, n plus 1 byte into the newly

2.5. String-Handling Functions | Secure Coding in C and C++: Strings... https://www.informit.com/articles/article.aspx?p=2036582&seqNum=5

12 of 15 3/02/2021, 7:11 pm

allocated memory, terminating the new string with a null byte. If the length of
the string is larger than n, only n bytes are duplicated. If n is larger than the
length of the string, all bytes in the string are copied into the new memory
buffer, including the terminating null byte. The newly created string will always
be properly terminated. The allocated string must be reclaimed by passing the
returned pointer to free().

Summary of Alternatives

Table 2.7 summarizes some of the alternative functions for truncating copy
described in this section.

Table 2.7. Truncating Copy Functions

Standard/TR Buffer
Overflow
Protection

Guarantees
Null
Termination

May
Truncate
String

Allocates
Dynamic
Memory

Checks
Runtime
Constraints

strncpy() C99 Yes No Yes No No

strlcpy() OpenBSD Yes Yes Yes No No

strndup() TR 24731-2 Yes Yes Yes Yes No

strncpy_s() C11 Yes Yes No No Yes

Table 2.8 summarizes some of the alternative functions for truncating
concatenation described in this section. TR 24731-2 does not define an
alternative truncating concatenation function.

Table 2.8. Truncating Concatenation Functions

Standard/TR Buffer
Overflow
Protection

Guarantees
Null
Termination

May
Truncate
String

Allocates
Dynamic
Memory

Checks
Runtime
Constraints

strncat() C99 Yes No Yes No No

strlcat() OpenBSD Yes Yes Yes No No

strncat_s() C11 Yes Yes No No Yes

memcpy() and memmove()

The C Standard memcpy() and memmove() functions are prone to error because
they do not allow the caller to specify the size of the destination array.

C11 Annex K Bounds-Checking Interfaces

The memcpy_s() and memmove_s() functions defined in C11 Annex K are similar to
the corresponding, less secure memcpy() and memmove() functions but provide
some additional safeguards. To prevent buffer overflow, the memcpy_s() and
memmove_s() functions have additional parameters that specify the size of the
destination array. If a runtime-constraint violation occurs, the destination array
is zeroed to increase the visibility of the problem. Additionally, to reduce the

2.5. String-Handling Functions | Secure Coding in C and C++: Strings... https://www.informit.com/articles/article.aspx?p=2036582&seqNum=5

13 of 15 3/02/2021, 7:11 pm

number of cases of undefined behavior, the memcpy_s() function must report a
constraint violation if an attempt is being made to copy overlapping objects.

The memcpy_s() and memmove_s() functions return 0 if successful. A nonzero
value is returned if either the source or destination pointer is NULL, if the
specified number of characters to copy/move is greater than the maximum size
of the destination buffer, or if the number of characters to copy/move or the
maximum size of the destination buffer is greater than RSIZE_MAX.

strlen()

The strlen() function is not particularly flawed, but its operations can be
subverted because of the weaknesses of the underlying string representation.
The strlen() function accepts a pointer to a character array and returns the
number of characters that precede the terminating null character. If the
character array is not properly null-terminated, the strlen() function may
return an erroneously large number that could result in a vulnerability when
used. Furthermore, if passed a non-null-terminated string, strlen() may read
past the bounds of a dynamically allocated array and cause the program to be
halted.

C99

C99 defines no alternative functions to strlen(). Consequently, it is necessary to
ensure that strings are properly null-terminated before passing them to strlen()
or that the result of the function is in the expected range when developing
strictly conforming C99 programs.

C11 Annex K Bounds-Checking Interfaces

C11 provides an alternative to the strlen() function—the bounds-checking
strnlen_s() function. In addition to a character pointer, the strnlen_s()
function accepts a maximum size. If the string is longer than the maximum size
specified, the maximum size rather than the actual size of the string is returned.
The strnlen_s() function has no runtime constraints. This lack of runtime
constraints, along with the values returned for a null pointer or an unterminated
string argument, makes strnlen_s() useful in algorithms that gracefully handle
such exceptional data.

There is a misconception that the bounds-checking functions are always
inherently safer than their traditional counterparts and that the traditional
functions should never be used. Dogmatically replacing calls to C99 functions
with calls to bounds-checking functions can lead to convoluted code that is no
safer than it would be if it used the traditional functions and is inefficient and
hard to read. An example is obtaining the length of a string literal, which leads
to silly code like this:

#define S "foo"
size_t n = strnlen_s(S, sizeof S);

The strnlen_s() function is useful when dealing with strings that might lack
their terminating null character. That the function returns the number of
elements in the array when no terminating null character is found causes many
calculations to be more straightforward.

Because the bounds-checking functions defined in C11 Annex K do not produce

2.5. String-Handling Functions | Secure Coding in C and C++: Strings... https://www.informit.com/articles/article.aspx?p=2036582&seqNum=5

14 of 15 3/02/2021, 7:11 pm

unterminated strings, in most cases it is unnecessary to replace calls to the
strlen() function with calls to strnlen_s().

The strnlen_s() function is identical to the POSIX function strnlen().

2.5. String-Handling Functions | Secure Coding in C and C++: Strings... https://www.informit.com/articles/article.aspx?p=2036582&seqNum=5

15 of 15 3/02/2021, 7:11 pm

