19 npm Packages Compromised in Major Supply-Chain Attack https://www.ox.security/blog/npm-packages-compromised/

19 npm Packages Compromised in Major Supply-Chain Attack
‘Moshe Siman Tov Bustan

‘The Great npm Compromise: A Post-Mortem

A coordinated supply chain attack on the npm ecosystem was detected today, a swift and widespread compromise that left no doubt about the increasingly concerning nature of open-source threats. While many headlines focused on a phishing email, the real story lies in the sophisticated, multi-layered payload that followed, one
designed to silently exfiltrate data from crypto walle

“This wasn't a smash-and-grab operation, it was a highly targeted operation that leveraged social engineering to plant an advanced, client-side financial weapon. It was a perfectly executed demonstration of why a reactive, traditional security approach to application and supply chain security just isn't enough anymore.
“This new level of threat demands a new approach to security. It's no longer enough to look for what's wrong; we need a security model that anticipates threats by understanding the subtle, context of your code and ecosystem.

But first, the attack.

npm Supply Chain Attack: A Social Engineering Masterclass

compromise initiated by a phishing campaign against a maintainer of widely used npm packages. The attackers gained control of the maintainer’s account and used the access to inject malicious code into 19 popular dependencies, which collectively have over 2 billion weekly downloads. The injected
pavtond was identical across al affected packages, designed to slently siphon sensitive information from system nteracting with erypto asses.

The compromised packages and their malicious versions are:

Supports- color@mo 2.1
strip-ansi@7.1.1
ansi-regex@6.2.1
Wrap-ansi@9.0.1
color-convert@3.1.1
color-name@2.0.1

arrayish@0.3.3
slice-ansi@7.1.1
color@s.0.1
color-string@2.1.1
simple-swizzle@0.2.3
supports-hyperlinks@4.1.1
has-ansi@6.0.1

chalk-template@1.1.1
backslash@0.2.1
error-ex@1.3.3

As of the time of publication, the current state of packages is as follows:

NPM Package Malicious Version | Current Version | Status
backslash 0.2.1 0.2.0 Reverted
chalk-template 1.1.1 1.1.2 Fixed
supports-hyperlinks [4.1.1 4.1.2 Fixed
has-ansi 6.0.1 6.0.2 Fixed
simple-swizzle 0.2.3 0.2.2 Reverted
color-string 211 2.1.0 Reverted
error-ex 1.3.3 1.3.2 Reverted
color-name 2.0.1 2.0.0 Reverted
is-arrayish 0.3.3 0.3.2 Reverted
slice-ansi 711 7.1.2 Fixed
color-convert 3.1.1 3.1.0 Reverted
wrap-ansi 9.0.1 9.0.2 Fixed
ansi-regex 6.2.1 6.2.2 Fixed
supports-color 10.2.1 10.2.2 Fixed
strip-ansi 711 7.1.2 Fixed
chalk 5.6.1 5.6.2 Fixed
debug 442 4.4.1 Reverted
ansi-styles 6.2.2 6.2.3 Fixed

How the Compromise Happens

There were two key ways this vulnerability could have put organizations at risk:

1. One of the compromised packages was used for the first time, and the malicious version ended up in the environment.
2. A container was rebuilt, and, during the process, one of the vulnerable packages was included. Because a file lock was not used to pin package versions, the build pulled the latest, and compromised versions from npm, which were then embedded into the artifacts
3.1fan npm update command was run, the execution would bump up the versions in the packagejson to the latest (and compromised) versions.

Rebuilding the artifact at this point should retrieve the fixed package versions from npm, effectively remediating the vulnerability.

Technical Analysis of the Attack Vector and Payload

The nitial compromise began vith a sophisticated phlshmg emailsent from a raudulent domain, npmjs help, designed o impersonate the ffcial npm registry (xpmis.com) The email used always-rliabl socal engincering to tiek the maintainer into“updating” their 2FA eredentials on a fakelogin page. The credentals and token
‘were then exfiltrated to an

‘The malicious code injected into the packages functioned as a “Web3 drainer,” or a man-in-the-browser attack, engineered to hijack eryptocurrency activity. Once active, it silently monitors for connected wallets and manipulates transactions by using techniques like transaction swapping.

‘e payload's piasy fution wag o keseept and manipulate coyptogutrancy transactions by booking ko standare browser APla ke ot d XML tpRocuest, a5 ell a8 Web APl such s indowtheren ard thos use by wllts ks etabasl and Phaston. Becaussth s tatapers wit the data displyed on el
pace, ven deposit Felds or QR codes can be ltered without the users Knowlege, resulting in funds, token, and approvals being diverted directly o the attackér

The malware ble of add variety Iuding Ethereum, Bitcoin, Solana, Tron, Litecoin, and Bitcoin Cash. It also targeted on-chain smart contract functions, such as ERC-20 token transfers and approvals, to steal a wide range of assets. The addre:

incl wapping logic was particularly
advanced, using a sting, slmllanlv algonlhm o ovenehtenn et i 1 e looking” attacker address to the legitimate one, making the fraudulent address nearly identical to the intended one.

OX Security in Action

“This attack underscores the critical need for a new, layered approach to application security. The OX Security Platform takes an Al-powered approach to holistie security for an Al-driven world.

OX's real-time threat intelligence and SBOM correlation engine can identify malicious versions and i tomated alerts ffected envi oftware Bill of Materials (SBOM) is a complete inventory of all the components that comprise a software application, providing a centralized record of third-party and open-
source dependencies. This allows our engine to rapidly identify which environments are affected by inersbiies o trents.

OX customers would see the detection of this incident on their security dashboard.

In the particular case of the npm attack, here is an example of what our customers would see in their dashboards.

1 of2 21/09/2025, 08:19

19 npm Packages Compromised in Major Supply-Chain Attack https://www.ox.security/blog/npm-packages-compromised/

‘The platform flagged error-ex@1.3.3 with a Critical severity, identifying a “Dependency-Chain Hijack.”

“The “OX Al Analysis” went beyond simple pattern matching; it understood the true implications of the package’s behavior by seeing that it was attempting to intercept browser core functions and wallet APIs. The platform didn’t just identify the threat; it provided clear, actionable remediation steps.

‘The recommendation w:

asimple and immediate patch version change: “Please downgrade malicious dependency error-ex@1.3.3 to safer dependency 1.3.2” . This is

the essence of OX, not just detecting a vulnerability, but understanding its context and providing a specific, automated pathway to remediation.

If your environment includes any of the affected versions, OX recommends the following:

« Immediate upgrade to clean versions.
« Full dependency audit using OX's SBOM scanner.
+ Runtime behavior analysis to detect any wallet-related exfiltration attempts.

If you are not an OX customer, you can still check for the following Indicators of Compromise (I0Cs) in your container checkethereumw

newdlocal

‘To check your own environment, copy-paste, and run the following in your container shell:
grep -RInE

Conclusion

For teams without access to automated security solutions, the immediate priority s to audit projects manually. Remove or downgrade the compromised package versions, rebuild applications from clean sources, and review deployed environments for any injected code. Developers and end-users should revoke existing token
approvals, rotate secrets, and, when possible, move funds to fresh wallets created offline.

“The fragility of trust in open-source ecosystems is now clear. OX Security’s layered approach, combining SBOM visibility, runtime monitoring, and threat intelligence ensures that even deeply nested threats are surfaced and neutralized before damage is done.

We'll continue to monitor the npm ecosystem and provide updates as the sit

evolves. For real lerts and ation guidance, visit your OX Security dashboard or contact your account team.

Appendix

“To validate whether npm cache contains the malicious dependencies, or your codebase lsts them directly, run the following seripts:
npm cache validator:

#1/use/bin/eny bash
Set -euo pipefail

packages=(
backslash@o.2.1
chalk-template1.
supports- hyparlmks@d 11
has-ansig6.0.1
simple-swizz1eg0.2.3
color-stringg2.1.1
ror-ex@l.3.3

color-naneg2.0.1

3

Color-convertg. 1.1
wrap-ansi@9.
ansi-regexs.2.1
supports-colorél. 2.
strip-ansigr.
chalkgs..
debugt
ansi-stylesgs.2.2

)

echo "Checking npn cache.
npm_output="$(npm cache 15 2/dev/null || true)”

foume-falze
s tpakoses el

e
¥ gren 8 e st < Son owout chen
echo "
foumacirue
done
$found || echo "(none)"
npm code dependency checker:

#1/bin/sh

kgs="backslashg.2.1 chalkgs.6.1 1.1 color-convertg3.1.1 \

Color-nanefz 0.1 color-string@. L1 wrap-ansifs 0.1 supporcs-ypenlincsgr 1.1\
Strip-ansif7.1.1 slice-ansig7.1.1 simple-suizzlege.2.3
rror L3 el rego@h 2.1 aneL-mtylenge 2 g supporea-coroneu. 1.1 debuggd.a.2"

for in spigs; do
pa); winsiore)
LRk tain: v+

o 12 4T --aLL deptn-intinity 2>/dev/mut \
rep -0 "$pkg@[" 1*" | cut -d -f2 | sort -u | sed 's/°/ - /" \
1| echo = - Nn(installed”

done

2 of 2 21/09/2025, 08:19

